Reconstructing Convex Polygons and Polyhedra from Edge and Face Counts in Orthogonal Projections

نویسندگان

  • Therese C. Biedl
  • Masud Hasan
  • Alejandro López-Ortiz
چکیده

We study the problem of constructing convex polygons and convex polyhedra given the number of visible edges and visible faces from some orthogonal projections. In 2D, we find necessary and sufficient conditions for the existence of a feasible polygon of size N and give an algorithm to construct one, if it exists. When N is not known, we give an algorithm to find the maximum and minimum size of a feasible polygon. In 3D, when the directions span a single plane we show that a feasible polyhedron can be constructed from a feasible polygon. We also give an algorithm to construct a feasible polyhedron when the directions are covered by two planes. Finally, we show that the problem becomes NP-complete for three or more planes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unfolding and Reconstructing Polyhedra

This thesis covers work on two topics: unfolding polyhedra into the plane and reconstructing polyhedra from partial information. For each topic, we describe previous work in the area and present an array of new research and results. Our work on unfolding is motivated by the problem of characterizing precisely when overlaps will occur when a polyhedron is cut along edges and unfolded. By contras...

متن کامل

A Fast Algorithm for Covering Rectangular Orthogonal Polygons with a Minimum Number of r-Stars

Introduction This paper presents an algorithm for covering orthogonal polygons with minimal number of guards. This idea examines the minimum number of guards for orthogonal simple polygons (without holes) for all scenarios and can also find a rectangular area for each guards. We consider the problem of covering orthogonal polygons with a minimum number of r-stars. In each orthogonal polygon P,...

متن کامل

Cauchy's Theorem for Orthogonal Polyhedra of Genus 0

A famous theorem by Cauchy states that a convex polyhedron is determined by its incidence structure and face-polygons alone. In this paper, we prove the same for orthogonal polyhedra of genus 0 as long as no face has a hole. Our proof yields a linear-time algorithm to find the dihedral angles.

متن کامل

When can a graph form an orthogonal polyhedron?

Polyhedra are an important basic structure in computational geometry. One of the most beautiful results concerning polyhedra is Cauchy’s theorem, which states that a convex polyhedron is uniquely defined by its graph, edge lengths and facial angles. (See Section 2 for definitions.) The proof of Cauchy’s theorem (see e.g. [2]) unfortunately is nonconstructive, and the only known algorithm to rec...

متن کامل

Modelling Decision Problems Via Birkhoff Polyhedra

A compact formulation of the set of tours neither in a graph nor its complement is presented and illustrates a general methodology proposed for constructing polyhedral models of decision problems based upon permutations, projection and lifting techniques. Directed Hamilton tours on n vertex graphs are interpreted as (n-1)- permutations. Sets of extrema of Birkhoff polyhedra are mapped to tours ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007